Christopher Marry, James Buckland, Steve Heffernan

Alarm Clock Automation

-—;! 1_ml'

FHE

.
—
—

%
i 3
g
Neg
ey
~
e

.

—

&

Christopher Marry, James Buckland, Steve Heffernan

Project Description

For many, a standard alarm clock is ineffective at waking them up. Some people can
completely ignore sounds when they sleep. Others wear earplugs so they can sleep despite a
snoring roommate. Traditional sound-based alarm clocks won’t do anything for either of these
people. However, a sudden, bright light is almost always enough to force people out of bed. We
decided to build an alarm clock system that wakes people up via both light and sound. The sound
is provided by a standard buzzer. The light is provided via a motor attached to the blinds that can
open and close the blinds. When the alarm goes off, the blinds open and a buzzer sounds.
Sometimes, you need a little extra sleep, which is why there is also a snooze function. When the
snooze button is hit, the alarm stops and the blinds close, ready to go off again in a few minutes.

Description of Work

User Interface

Originally, we had planned to take apart an alarm clock and wire it to an Arduino, but
this proved to be far more complicated that we anticipated. It was far easier to build an alarm
clock from scratch than to reverse engineer one and add extra wires. As a result, we studied the
functionality of a normal alarm clock in order to replicate it. Just like a regular alarm clock, ours
is controlled with several buttons and switches. There is an alarm on/off switch, and a switch that
allows the user to set the time or the alarm. We also have buttons to increment the hours or
minutes of the time or alarm by one, as well as a snooze button. The time is displayed on a set of
four seven-segment displays. In addition, there is a red indicator LED that turns on when the
alarm is set to go off.

Electronics

We used four 74HCS595N shift registers, an SN754410 H-Bridge two QDSP-G545 dual
seven-segment displays, three pushbuttons, two switches, an LED, a buzzer, a custom-built
motor mount, a motor, and more resistors than you can shake a stick at. The wire was all
custom-cut and mounted onto breadboards borrowed from 265 Everitt, which were attached to a
wooden mount. The electronics were installed as they were coded and given daily builds and
tests with user input. We began with the display, and added time functionality using the open
source Arduino Time library, and then buttons/UI features, and finally motor control.

The shift registers allowed us to control all four of the seven segment displays using only
just three outputs from the Arduino. This was a major hurdle because the arduino only has 12
inputs/outputs, which we needed to consolidate in order to use all the components we needed.

Christopher Marry, James Buckland, Steve Heffernan

We made several sample-design first draft breadboard to make sure the earlier drafts of
the code worked, and tested the power of the motor and shape of the motor mount, verifying that
the project would work far before the entire thing was finished.

Code

For the code itself, see the end of our project. A short summary: our code relies on the
user to set the time and alarm, but counts forward in seconds using the internal clock that the
Arduino comes equipped with. It initially sets the time to be 00:00 and the alarm to be 00:05, and
the user can bump up the times from there. When the alarm goes off, the blinds open and the
alarm sounds. Turning off the alarm will turn off the buzzer, but leave the blinds open; hitting
snooze bumps the alarm up by five minutes, silences the alarm, and closes the blinds
temporarily.

We had some experience with code, but the java coding was a challenge for us; not
because the language was unfamiliar, but because the internal logic required for the code was
complex, requiring a single processor to approximate parallel processing (counting time and
opening blinds). Eventually, we figured out how to simulate parallel processing by making the
arduino check the states of the buttons, refresh the time, and check to see if it should be sounding
an alarm in a never-ending loop. This loop executes dozens of times per second, so from a user’s
point of view, it does everything simultaneously.

Motor

We started out by using the small motor that came with the Arduino. By experimenting
with the code, we found that we could spin the motor in either directions at any speed we
wanted. However, the stock motor was not powerful enough to turn the blind rods, so we needed
something bigger.

We decided to purchase a DCM-330 motor from the ECE store. This presented new
challenges because the motor drew too much current for the Arduino to handle. We needed an
external power supply for the motor, which we created by linking two nine volt batteries in
series. This necessitated a new control method for the motor. We tried connecting the motor,
batteries, and arduino with transistors. This proved too difficult due to our lack of knowledge
about electronics.

One of the ELAs suggested an H-bridge, an IC circuit that is designed to allow, block, or
reverse current. This was perfect for our needs. The motor, batteries and arduino were all hooked
up to the H-bridge. Depending on the states of three inputs, the motor would turn left, turn right,
or stay still.

Mounting

In order to control the blinds, we had to find a way to attach a motor to the blinds. We decided
early on that the easiest way to do this was to attach the motor to the hexagonal blind rod. By

Christopher Marry, James Buckland, Steve Heffernan

turning the rod, the angle of the blinds changes, allowing us to open and close the blinds. In
order to attach the motor to the rod, we needed to build a connector. This connector was custom
built using the 3d printer. It is epoxied to the shaft of the motor, and slides freely on and off the
blind rod.

The end of the blind rod is several feet off the ground, so we also needed a way to hold the motor
in place on the wall. To accomplish this, we built a wooden box with a hole drilled in it for the
motor. The motor is secured with two screws, but it has a little room to move back and forth,
making it adjustable to fit any window. The box is attached to the wall via Velcro, making it easy
to remove the alarm clock if desired.

The mounting system also allows the user to manually open and close the blinds by twisting the
rod. It does not impede normal operation of the blinds.

Statement of Budget

Purchases:

$35 Arduino Kit

$5 Speaker

$3 Three seven-segment displays
$12 Switches

$12 Breadboard

$9 Shift Registers

$10 Wood and Hardware

$86 Total Spent

Other Materials: (free)
Large Breadboard

Wire

H-Bridge

Extra Switches

After spending quite a bit of money at the ECE store, we found out about the Electronics Service
Shop in 265 Everitt. The ESS offered many small electrical components for free. We also rented

a large breadboard that allowed us to consolidate all of our wiring onto one massive breadboard.

Time:

Christopher Marry, James Buckland, Steve Heffernan

We had 10 weeks, with four hours of class per week. With three group members, this gave us
120 in-class man hours. We also met outside of class time on most Fridays and on some
Saturdays, pushing the total number of man-hours spent on the project to around 180.

Reflection/Discussion

Overall, the project went very well. Our team was cohesive and we all got along together
very well. There were no cross words or heated arguments; we all stayed calm and rational
whenever things got difficult. We were very lucky to get a group of personalities that worked
well together.

When it came to the panel reviews, they were great towards helping us on the project.
The panel reviews forced us to have a deeper understanding of our project so that we would be
able to answer difficult questions. This caused us to realize many flaws in our ideas before we
started wasting time and money on building something that would eventually not work. The
other students and the ELAs asked questions that made us reconsider what we were doing and
alerted us to when we were doing something in an overly complicated way. The panel reviews
were also great to just see what other interesting projects other groups were doing and being able
to give them ideas on how to improve their project.

We learned quite a bit about practical coding throughout the project. None of us had ever
coded any hardware before; it was all software. This was completely new ground for us. We
learned how to code for Arduino by looking at other examples, as well as through trial and error.
One thing that we never quite figured out was parallel processing. It should be something that
arduino could do, but we eventually just cheated it by putting all of our code in a very
quickly-executing loop.

None of us had any experience with electronics before this project, either. Everything that
we learned about electronics was picked up on the fly. All of this spur of the moment research
helped us to learn how to research better. We had to look beyond just Wikipedia in order to
figure out everything that we needed to know.

Another great thing that we learned in this class was all of the resources we have
available to us on campus. Without this class, we would have never found out about the ECE
store, the Fab Lab, or the Electronics Service Shop. These places will surely be useful for
projects in future classes.

This class also prepared us for our senior design class. In the senior design class, we will

Christopher Marry, James Buckland, Steve Heffernan

be under much more stress as the project will be indicative of all that we have learned throughout
our college career. This class allowed us to tackle a free-form problem in a similar way to a
senior design class, but with much lower academic risk should our project fail.

Christopher Marry, James Buckland, Steve Heffernan

Future Work

There are several improvements that could be made to the project to make it suitable for
mass production and sale. Chief among these would a printed circuit board. Our breadboarding
was very rough and there were almost a hundred wires running all over it. It was also very
fragile, which would be unsuitable for the abuse that alarm clocks are generally put through.
Along with the printed circuit board, we would design a plastic body to contain all the
electronics and hide them from view. This would allow us to use better buttons and switches than
the ones that are compatible with breadboards.

If this were to be mass-produced, we would need to replace the arduino with several ICs.
We have done some research into how real clocks work and they use binary to seven-segment
converters, clock chips, among others. In addition, the Arduino is very expensive and cannot be
attached to a printed circuit board. We would also make the alarm clock powered by a wall
outlet. The current design requires 3 nine volt batteries, which is expensive and impractical.
Since this alarm clock is attached to the wall, it does not need to be portable.

Some larger-scale improvements could be done to improve the functionality of the clock.
Currently, the clock is connected to the motor by long wires that might get in the way in the
bedroom. If we could control the motor wirelessly via Bluetooth or some other means, it would
eliminate the unsightly wires and a potential tripping hazard.

We could also improve the way the clock brings light into the room. The blinds are
limited by the amount of light outside when the alarm goes off. If the user needs to wake up
before the sun is up, then the blinds won’t do much. We can fix this by also controlling the
ceiling lights in the room. This would be similar to how we control the blinds: we would mount a
servo next to the light switch that would flick the lights on and off.

Christopher Marry, James Buckland, Steve Heffernan

A - -
L I S T

The Front of the clock. In the center are the four seven segment displays, along with the massive
array of resistors and wires. The four chips on the sides of the displays are the shift registers. On
the bottom row, starting from the left are the snooze buttons, alarm on/off switch, time set/alarm
set switch, hour button, and minute button. The fifth chip is the H-bridge, which has wires
leading to the motor and is connected to a separate power source on the back of the mount.

Christopher Marry, James Buckland, Steve Heffernan

The back of the mount. It has the three batteries, one for the arduino and two for the motor. A
smaller breadboard is used to organize the wires leading to the main board. The buzzer and the
arduino board are screwed into the wood.

Christopher Marry, James Buckland, Steve Heffernan

The motor and mount. You can see one of the screws that holds the motor in place on the left
side. The motor is loosely screwed in so that it can bend to match the angle of the blind rod. The
white plastic mount is epoxied to the motor, but can freely slip on and off the rod. The whole
wooden assembly is attached to the wall via velcro.

Christopher Marry, James Buckland, Steve Heffernan

#tinclude <Time.h>

void set
t#tdefine
#tdefine
t#tdefine
t#tdefine
t#tdefine
t#tdefine
ttdefine
t#tdefine
t#tdefine

t#tdefine
t#tdefine
t#tdefine

pinMod
pinMod
pinMod
pinMod
pinMod
pinMod
pinMod

up() {
dataPin 3

latchPin 4
clockPin 5
minPin 6
hourPin 7
setPin 8
alarmPin 9
snoozePin 10
soundPin 11

enPin 2
leftPin 12
rightPin 13

e(dataPin,
e(latchPin,
e(clockPin,
e(minPin,
e(hourPin,
e(setPin,
e(alarmPin,

//include time module

//define pins

OUTPUT); //define which pins are inputs and outputs

OUTPUT);
OUTPUT);
INPUT);
INPUT);
INPUT);
INPUT);

pinMode(snoozePin, INPUT);
pinMode(soundPin, OUTPUT);

pinMode(enPin, OUTPUT);
pinMode(leftPin, OUTPUT);
pinMode(rightPin, OUTPUT);

Serial.begin(9600);
Serial.println("started");

int minS

tate

is being pressed

boolean
boolean

minPressed
minTrigger

int hourState

boolean
boolean

hourPressed
hourTrigger

int snoozeState
boolean snoozePressed = false;
boolean snoozeTrigger = false;

//initia
int aHou
int aMin
boolean
boolean
boolean
boolean

1 parameters
r

displayAlarm
isAlarm

firstTime =
blindsClosed

= 0;

= false;
= false;
= 0;
= false;
= false;
= 0;

= 0;
= 5;
= false;
= false;
true;
= true;

// define a minute and hour state; this indicates whether the button

// define whether the button is being pressed
// define whether the button has *just* been in the pressed state

// the snooze if off

// define an initial hour for the alarm
// define an initial minute for the alarm
// is the alarm being displayed when the clock is turned on? no.

int length = 1; // the number of notes
char notes[] = "c"; //char notes[] = "ccggaagffeeddc "; // a space represents a rest
int beats[] = {1}; //int beats[] = {1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };

Christopher Marry, James Buckland, Steve Heffernan

int tempo = 300; //tempo is 300, come on, this stuff is basic

void loop() {

isFirstTime(); // check to see if the alarm clock has just been turned on
refreshSsD(); // refresh the display
minCheck(); // check to see if the minute button is being pushed
hourCheck(); // check to see if the hour button is being pushed
snoozeCheck(); // check to see if the snooze button is being pushed
if(digitalRead(alarmPin) == LOW){

matchCheck(); // check to see if the alarm ought to be going off
} else {isAlarm = false;}

void isFirstTime(){ // if it’s the first time, turn off the motor
if (firstTime == true){digitalWrite(enPin, LOW);}
firstTime = 0;

}

void matchCheck(){ // check to see if the alarm ought to be going off
if ((aHour == hour()) & & (aMin == minute())){
isAlarm = true;
if (blindsClosed == true){openBlinds(); blindsClosed = false; soundAlarm();}
if (blindsClosed == false){soundAlarm();}
} else {isAlarm = false;}

void openBlinds(){ // how to open the blinds in a curve pattern
for (int i = @; i < 75; i++){
digitalWrite(enPin, HIGH);
digitalWrite(leftPin, LOW);
digitalWrite(rightPin, HIGH);
delay(190);
digitalWrite(enPin, LOW);
delay(190);

void closeBlinds(){ //how to close the blinds smoothly
for (int i = @0; i < 75; i++){
digitalWrite(enPin, HIGH);
digitalWrite(leftPin, HIGH);
digitalWrite(rightPin, LOW);
delay(10);
digitalWrite(enPin, LOW);
delay(10);

void soundAlarm(){ //defines the ringtone that the buzzer uses to go off
digitalWrite(soundPin, HIGH);
for (int i = @; i < length; i++) {
if (notes[i] == ' ') { delay(beats[i] * tempo); } else { playNote(notes[i], beats[i] * tempo); }
delay(tempo / 2);
}
}

void playTone(int tone, int duration) { //how to send a tone to the speaker

Christopher Marry, James Buckland, Steve Heffernan

for (long i = @; i < duration * 1000L; i += tone * 2) {
digitalWrite(soundPin, HIGH);
delayMicroseconds(tone);
digitalWrite(soundPin, LOW);
delayMicroseconds(tone);

void playNote(char note, int duration) { // define the tuning tones of the scale
char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' };
int tones[] = { 1915, 170, 1519, 1432, 1275, 1136, 1014, 956 };
// play the tone corresponding to the note name
for (int i = 0; i < 8; i++) {
if (names[i] == note) {playTone(tones[i], duration);}
}
}

void refreshSSD(){ // check to see which way the time/alarm pin is, and display the according time
value
if(digitalRead(setPin) == LOW){
if(displayAlarm == true){tset(); displayAlarm = false;}
else{refreshTime(); displayAlarm = false;}
}
if(digitalRead(setPin) == HIGH){
if(displayAlarm == false){aset(); displayAlarm = true;}
else{refreshAlarm(); displayAlarm = true;}
}
}

void aset(){ // display the words ‘aset’ when the alarm is turned on

digitalWrite(latchPin, LOW);

shiftOut(dataPin, clockPin, MSBFIRST, B10000111);
shiftOut(dataPin, clockPin, MSBFIRST, B10000110);
shiftout(dataPin, clockPin, MSBFIRST, B10010010);
shiftout(dataPin, clockPin, MSBFIRST, B10001000);
digitalWrite(latchPin, HIGH);

delay(1000);

void tset(){ // display the words ‘tset’ when the time is turned on
digitalWrite(latchPin, LOW);
shiftout(dataPin, clockPin, MSBFIRST, B10000111);
shiftout(dataPin, clockPin, MSBFIRST, B10000110);
shiftout(dataPin, clockPin, MSBFIRST, B10010010);
shiftout(dataPin, clockPin, MSBFIRST, B10000111);
digitalWrite(latchPin, HIGH);
delay(1000);

void refreshTime(){ //how to display the time live
byte a = assign(minute()%10) + seconds();
byte b = assign(minute()/10) + blink2();
byte c¢ = assign(hour()%10) + blink();
byte d = assign(hour()/10) + blink2();
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, MSBFIRST, a);

Christopher Marry, James Buckland, Steve Heffernan

shiftOut(dataPin, clockPin, MSBFIRST, b);
shiftOut(dataPin, clockPin, MSBFIRST, c);
shiftout(dataPin, clockPin, MSBFIRST, d);
digitalWrite(latchPin, HIGH);

void refreshAlarm(){ //how to display the alarm
byte a = assign(aMin%10) + B10000000;
byte b = assign(aMin/10) + B100©00000;
byte ¢ = assign(aHour%10) + B10000000;
byte d = assign(aHour/10) + B10000000;
digitalWrite(latchPin, LOW);
shiftout(dataPin, clockPin, MSBFIRST, a);
shiftout(dataPin, clockPin, MSBFIRST, b);
shiftOut(dataPin, clockPin, MSBFIRST, c);
shiftOut(dataPin, clockPin, MSBFIRST, d);
digitalWrite(latchPin, HIGH);

void minCheck(){ //check to see if the minute button is being pressed; if it is, bump the minute value
up one
minState = digitalRead(minPin);
if (minState == LOW){minTrigger = true;}
if (minState == HIGH){
if (minTrigger == true){
if(digitalRead(setPin) == HIGH){aMin = (aMin + 1)%60;}
if(digitalRead(setPin) == LOW){setTime(hour(), minute()+1, second(), day(), month(), year());}
minTrigger = false;
}
}
}

void hourcCheck(){ //same for hour
hourState = digitalRead(hourPin);
if (hourState == LOW){hourTrigger = true;}
if (hourState == HIGH){
if (hourTrigger == true){
if(digitalRead(setPin) == HIGH){aHour = (aHour + 1)%24;}
if(digitalRead(setPin) == LOW){setTime(hour()+1, minute(), second(), day(), month(), year());}
hourTrigger = false;
}
}
}

void snoozeCheck(){ //check to see if the snooze button is being pressed; if it is, increment the alarm
by five minutes
snoozeState = digitalRead(snoozePin);

if (snoozeState == LOW){snoozeTrigger = true;}
if (snoozeState == HIGH){
if (snoozeTrigger == true){

if (aMin < 55){aMin = (aMin + 5)%60;}

else {aMin = (aMin + 5)%60; aHour = (aHour + 1)%24;}

if (isAlarm == true){closeBlinds(); blindsClosed = true;}
snoozeTrigger = false;

Christopher Marry, James Buckland, Steve Heffernan

byte seconds(){ //define the seconds byte
byte j = B000000OO;
if (second()%2 == 0){j = B1000E00O;}
return j;

}

byte blink(){ // define what it means for a dot to blink on...
byte j = BO0OGEAO;
if (isAlarm){j = seconds();}
return j;

}

byte blink2(){ //and off
byte j = BoPE00VOO;
if (isAlarm){j = seconds() + B10000000; }
return j;

}

byte alarmNotifier(){ //define a visual alarm sequence
byte j = BoGE00OOO;

if (isAlarm){j = B10000000; }

return j;

}

byte assign(int i){ // the key array of the project; turns integers into seven-segment displays
byte array[] = {B11000000, B11111001, B10100100, B10110000, B10011001, B10010010, B10000010,
B11111000, B10000000, B10011000};
byte j = array[i];
return j;

}

